Characterization and expression pattern of zebrafish Anti-Müllerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development.
نویسندگان
چکیده
The role of Anti-Müllerian hormone (Amh) during gonad development has been studied extensively in mammals, but is less well understood in other vertebrates. In male mammalian embryos, Sox9 activates expression of Amh, which initiates the regression of the Mullerian ducts and inhibits the expression of aromatase (Cyp19a1), the enzyme that converts androgens to estrogens. To better understand shared features of vertebrate gonadogenesis, we cloned amh cDNA from zebrafish, characterized its genomic structure, mapped it, analyzed conserved syntenies, studied its expression pattern in embryos, larvae, juveniles, and adults, and compared it to the expression patterns of sox9a, sox9b and cyp19a1a. We found that the onset of amh expression occurred while gonads were still undifferentiated and sox9a and cyp19a1a were already expressed. In differentiated gonads of juveniles, amh showed a sexually dimorphic expression pattern. In 31 days post-fertilization juveniles, testes expressed amh and sox9a, but not cyp19a1a, while ovaries expressed cyp19a1a and sox9b, but not amh. In adult testes, amh and sox9a were expressed in presumptive Sertoli cells. In adult ovaries, amh and cyp19a1a were expressed in granulosa cells surrounding the oocytes, and sox9b was expressed in a complementary fashion in the ooplasm of oocytes. The observed expression patterns of amh, sox9a, sox9b, and cyp19a1a in zebrafish correspond to the patterns expected if their regulatory interactions have been conserved with mammals. The finding that zebrafish sox9b and sox8 were not co-expressed with amh in oocytes excludes the possibility that amh expression in zebrafish granulosa cells is directly regulated by either of these two genes.
منابع مشابه
Sex differentiation in Atlantic cod (Gadus morhua L.): morphological and gene expression studies
BACKGROUND In differentiated gonochoristic species, a bipotential gonad develops into an ovary or testis during sex differentiation. Knowledge about this process is necessary to improve methods for masculinizing genetically female Atlantic cod for the subsequent purpose of producing all-female populations. METHODS Gonads were examined histologically in juveniles from 14 to 39 mm total body le...
متن کاملReduced anti-Müllerian hormone (AMH) in mares with hemorrhagic anovulatory follicles
Anti-Müllerian hormone (AMH) has been observed to decrease with the development of hemorrhagic anovulatory follicles (HAFs) in mares. Two studies were conducted to evaluate AMH concentration in mares with HAFs compared to seasonally anoestrous and cyclic mares, and to elucidate changes of AMH with the development of luteinised unruptured follicles (LUFs). In study 1, AMH and progesterone were e...
متن کاملConstruction and characterization of a sox9b transgenic reporter line.
The transcription factor SOX9 is a member of the SRY-related high-mobility-group box (SOX) superfamily of genes. In mammals, Sox9 plays important roles in many developmental processes including craniofacial, skeletal and heart morphogenesis, retinal and brain development, and gonad differentiation. Human mutations in SOX9 or the SOX9 promoter result in campomelic dysplasia, a severe genetic dis...
متن کاملGonad differentiation in zebrafish is regulated by the canonical Wnt signaling pathway.
Zebrafish males undergo a "juvenile ovary-to-testis" gonadal transformation process. Several genes, including nuclear receptor subfamily 5, group A (nr5a) and anti-Müllerian hormone (amh), and pathways such as Tp53-mediated germ-cell apoptosis have been implicated in zebrafish testis formation. However, our knowledge of the regulation of this complex process is incomplete, and much remains to b...
متن کاملSox9b is required for epicardium formation and plays a role in TCDD-induced heart malformation in zebrafish.
Activation of the transcription factor aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prevents the formation of the epicardium and leads to severe heart malformations in developing zebrafish (Danio rerio). The downstream genes that cause heart malformation are not known. Because TCDD causes craniofacial malformations in zebrafish by downregulating the sox9b gene, we hyp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene expression patterns : GEP
دوره 5 5 شماره
صفحات -
تاریخ انتشار 2005